安装依赖库
首先,确保你已经安装了 TensorFlow 和 Keras:
pip install tensorflow keras
使用预训练的模型生成艺术风格图像
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.applications import vgg19
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.vgg19 import preprocess_input
from tensorflow.keras.models import Model
# 加载预训练的 VGG19 模型
base_model = vgg19.VGG19(weights='imagenet')
model = Model(inputs=base_model.input, outputs=base_model.get_layer('block4_conv2').output)
# 加载图像并进行预处理
def load_and_process_image(image_path):
img = image.load_img(image_path, target_size=(224, 224))
img_array = image.img_to_array(img)
img_array = np.expand_dims(img_array, axis=0)
img_array = preprocess_input(img_array)
return img_array
# 将图像转换为风格矩阵
def get_style_matrix(img_array):
style_layers = ['block1_conv1', 'block2_conv1', 'block3_conv1', 'block4_conv1', 'block5_conv1']
style_outputs = [model.get_layer(name).output for name in style_layers]
style_model = Model(inputs=model.input, outputs=style_outputs)
style_matrices = style_model(img_array)
return style_matrices
# 计算风格损失
def compute_style_loss(style_matrix, generated_matrix):
loss = 0
for i in range(len(style_matrix)):
loss += np.mean(np.square(style_matrix[i] - generated_matrix[i]))
return loss / len(style_matrix)
# 生成艺术风格图像
def generate_artistic_image(content_path, style_path, num_iterations=100, alpha=10, beta=1e-3):
content_array = load_and_process_image(content_path)
style_array = load_and_process_image(style_path)
generated_array = content_array.copy()
generated_array = tf.Variable(generated_array, dtype=tf.float32)
opt = tf.optimizers.Adam(learning_rate=5)
for _ in range(num_iterations):
with tf.GradientTape() as tape:
content_output = model(content_array)
generated_output = model(generated_array)
style_output = model(style_array)
content_loss = tf.reduce_sum(tf.square(content_output - generated_output))
style_loss = compute_style_loss(style_output, generated_output)
total_loss = alpha * content_loss + beta * style_loss
grad = tape.gradient(total_loss, generated_array)
opt.apply_gradients([(grad, generated_array)])
generated_image = generated_array.numpy().squeeze()
generated_image = deprocess_image(generated_image)
return generated_image
# 将图像反处理为有效图像
def deprocess_image(processed_image):
x = processed_image.copy()
if len(x.shape) == 4:
x = np.squeeze(x, 0)
assert len(x.shape) == 3, ("Input to deprocess image must be an image of "
"dimension [1, height, width, channel] or [height, width, channel]")
if len(x.shape) != 3:
raise ValueError("Invalid input to deprocessing image")
# perform the inverse of the preprocessiing step
x[:, :, 0] += 103.939
x[:, :, 1] += 116.779
x[:, :, 2] += 123.68
x = x[:, :, ::-1]
x = np.clip(x, 0, 255).astype('uint8')
return x
# 选择一张内容图像和一种艺术风格
content_image_path = 'path_to_your_content_image.jpg'
style_image_path = 'path_to_your_style_image.jpg'
# 生成艺术风格图像
generated_image = generate_artistic_image(content_image_path, style_image_path)
# 显示图像
plt.imshow(generated_image)
plt.show()
请确保替换 path_to_your_content_image.jpg 和 path_to_your_style_image.jpg 为实际的图像路径。
这是一个简单的基于 VGG19 模型的风格迁移实现。在实际应用中,你可以尝试不同的模型、调整参数,以及使用其他先进的技术来生成更复杂的艺术风格图像。
转载请注明出处:http://www.pingtaimeng.com/article/detail/13347/Python 基础